Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1998 Printed in Austria

Short Communication

The First *Heck* Reactions with 1-Chloroalk-1-ynes: Syntheses of Enynes with Isolated and Conjugated π -Systems

Michael Weigelt¹, Diana Becher¹, Dieter Ströhl¹, Clemens Bruhn¹, Eike Poetsch², and Dirk Steinborn^{1,*}

¹ Institut für Anorganische Chemie der Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany

² Merck KGaA, D-64271 Darmstadt, Germany

Summary. The *Heck* reaction between 1-chloro-2-phenylacetylene and cycloalkenes or cycloalkadienes affords phenylethynyl substituted cycloalkenes as regular *Heck* products as well as 1,3diphenylprop-2-ynylidene and (cycloalkenyl)phenylmethylidene substituted bicyclic compounds as tandem products by reaction of CIC=CPh and the cycloalkene in a ratio of 1:2 and 2:1, respectively.

Keywords. Heck reaction; 1-Chloroalk-1-ynes; Cycloalkenes; Cycloalkadienes; Enynes.

Die ersten *Heck*-Reaktionen mit 1-Chloralk-1-inen: Synthesen von Eninen mit isolierten und konjugierten π -Systemen (Kurze Mitt.)

Zusammenfassung. Die *Heck*-Reaktion zwischen 1-Chlor-2-phenylacetylen und Cycloalkenen oder Cycloalkadienen ergibt phenylethinylsubstituierte Cycloalkene als normale *Heck*-Produkte sowie 1,3-diphenylprop-2-inyliden- und (cycloalkenyl)phenylmethyliden-substituierte Bicyclen als Tandemprodukte der Reaktion von ClC≡CPh und Cycloalkenen im Molverhältnis von 1:2 bzw. 2:1.

Introduction

The palladium catalyzed vinylation of organic halides RX (*Heck* reaction) both with conventional catalyst systems (*e.g.* $Pd(OAc)_2/P(o-tol)_3/NEt_3$) and under hydroorganylation conditions with *Larock* catalyst systems [1] (*e.g.* $Pd(OAc)_2/(NEt_3Bz)Cl/NaO_2CH$) is one of the most important C–C bond formation reactions in synthetic organic chemistry. As RX, mainly aryl, heterocyclic, vinyl, and benzyl iodides are used [2].

It has been reported that BrC \equiv CPh does not afford *Heck* products but 1,4-diphenylbutadiine as homodimer [3]. IC \equiv CR reacts with vinylogous carbonyl

^{*} Corresponding author

compounds to give enynoates and enynones $RC \equiv C-CH=CH-C(O)R'$ (R' = OMe, Me) [4]. Apart from this, 1-halolalk-1-ynes have not been used successfully in *Heck* reactions [5]. Here we report the reaction of 1-chloroalk-1-ynes with cycloalkenes and cycloalkadienes employing *Larock* catalyst systems.

Results and Discussion

Reactions of $XC \equiv CPh$ (X = I, Br, Cl) [6] with cyclohexene in the presence of a typical *Larock* catalyst system (Pd(OAc)₂/(NEt₃Bz)Cl/NaO₂CH = 1:20:60 in *DMF*; 5 mol% Pd referred to $XC \equiv CPh$) show that the yield of *Heck* products is highest using the chloroalkyne, whereas the iodoalkyne does not react to *Heck* products at all (Table 1). In all three cases, the haloalkynes react to give oligomers as the main products. In the case of BrC \equiv CPh, oligomers up to a polymerization degree of 16 were identified by means of MALDI-MS measurements. As blank experiments prove (Table 1), these oligomerization reactions are not even in part palladium catalyzed. The formation of 1,4-diphenylbutadiyne is only a minor side reaction and was not observed when using the chloroalkyne.

In general, the reactions of cycloalkenes with 1-chloro-2-phenylacetylene in the presence of the above mentioned catalyst system proceed to give the regular *Heck* products (reaction of 1 mol of cycloalkene with 1 mol of ClC \equiv CPh; 1:1 product). Furthermore, tandem reactions occur yielding 1,3-diphenylprop-2-ynylidene and (cycloalkenyl)phenylmethylidene substituted bicyclic compounds by reaction of 1 mol cycloalkene with 2 mol ClC \equiv CPh (1:2 product) and 2 mol cycloalkene with 1 mol ClC \equiv CPh (2:1 product), respectively (Scheme 1, Table 2).

	X	Heck reaction (with Pd cat.)			Decomp. reaction (without Pd cat.)			
		$U(\%)^{a}$	<i>n</i> (<i>Heck</i> prod.) ^b	$n(Ph_2C_4)^b$	<i>U</i> (%) ^c	$n(\mathrm{Ph}_{2}\mathrm{C}_{4})^{\mathrm{b}}$		
1	Ι	100	<1	1	89	6		
2	Br	100	12	3	51	3		
3	Cl	86	24	0	15	0		

Table 1. Heck reaction of XC=CPh with cyclohexene and stability of XC=CPh in DMF

^a Degree of conversion of $XC \equiv CPh$ in the *Heck* reaction (catalyst system: see text) with cyclohexene (*c*(cyclohexene):*c*($XC \equiv CPh$) = 15:1, 48 h, $T = 25^{\circ}C$; ^b mol%; ^c degree of conversion of $XC \equiv CPh$ yielding oligomers in *DMF* (t = 48 h, $T = 25^{\circ}C$)

Scheme 1

	Olefin	$c_{\rm ol}: c_{\rm ClC\equiv CPh}$	<i>t</i> (d)	$U_{\rm gc}~(\%)^{\rm a}$	Product distribution (%) ^b		(%) ^b	
					1:1	1:2	2:1	0:2
1	cyclohexene	15:1	2	24	10 ^c	75	7	_
2	cycloheptene	15:1	4	69	24	8	60	-
3	cycloheptene	1:1	4	33	14	66	14	-
4	cis-cyclooctene	50:1	4	53	56	-	38	-
5	1,4-cyclohexadiene	50:1	4	84	90	-	_	6
6	1,3-cycloheptadiene	30:1	4	44	86	4	7	1
7	cis,cis-1,5-cyclooctadiene	50:1	4	72	93	3	_	3
8	4-vinylcyclohexene ^d	15:1	2	34	85	_	_	-
9	p-methylstyrene	15:1	1	24	27	-	67	2

Table 2. Product distribution in the *Heck* reaction of cycloalkenes and cycloalkadienes with CIC=CPh (catalyst system: see text; $T = 25^{\circ}$ C)

^a Degree of conversion of ClC=CPh to low-molecular products; ^b differences to 100% arise from unidentified products; ^c the main isomer is 4-(phenylethynyl)cyclohexene; analogously, 4-substituted cyclohexenes were found to be the main products in the *Heck* arylation of cyclohexene [9]; ^d catalyst system: Pd(OAc)₂/P(*o*-tol)₃/NaOAc = 1:2:60, solvent: *DMF*, $T = 100^{\circ}$ C

Due to hydroorganylation conditions, hydrogenation of triple and/or double bonds was also observed.

In the reaction with cyclohexene, the 1:2 product is the major one (Table 2, entry 1), whereas in the reaction with cycloheptene the ratio of products can be influenced by the ratio of cycloheptene to ClC \equiv CPh (entries 2 and 3). With *cis*-cyclooctene, normal *Heck* reaction predominates (entry 4). Cycloalkadienes were found to react affording phenylethynylcycloalkenes as the principal products (entries 5–7), *i.e.*, regular *Heck* reactions under hydrogenation of one double bond take place. The homodimer 1,4-diphenylbutadiyne (0:2 product) is formed to a small extent only. The reaction of ClC \equiv CPh with *p*-methyl-styrene (included in Table 2, entry 9, for comparison) affords the 2:1 compound as the main product.

A plausible route for the formation of the tandem products is outlined in Scheme 2. The formation of the 1:1 products *via* **A** and **B** as intermediates is depicted in the first line. Intermediate **B** may also undergo an intramolecular insertion reaction to give **C** which in turn reacts either with cycloalkenes yielding the 2:1 products or with **A** in the sense of a transmetallation and reductive elimination affording the 1:2 products. The transmetallation may have a four-centered transition state [7]. A Pd(IV) intermediate formed by oxidative addition of CIC \equiv CPh to **C** followed by a reductive elimination may also be discussed [8]. The formation of the 1:2 products *via* a *Heck* reaction of the 1:1 products with **D** as an intermediate and a subsequent intramolecular insertion reaction was rendered unlikely by a separate experiment (4-(phenylethynyl)cyclohexene (Table 3, entry 5) and CIC \equiv CPh do not react to the corresponding *Heck* products).

The major products were obtained with yields between 14 and 73% (GC) and 6-49% (isolated, not optimized), respectively (Table 3). All substances were completely characterized by one- and two-dimensional ¹H and ¹³C NMR

Table 3. Syntheses of engues with isolated and conjugated π -systems (reaction conditions as in Table 2)

	Olefin	Produc	et type	Yield (%) gc/isol (purity (%))
1	cyclohexene	1:2	7-(1,3-diphenylprop-2-ynylidene)- bicyclo[2.2.1]heptane	18/13 (>97)
2	cycloheptene	2:1	8-((cyclohept-4- and 8-((cyclohept-3-enyl)- phenylmethylidene)bicyclo[3.2.1]octane	41/11 (>97)
3	cycloheptene	1:2	8-(1,3-diphenylprop-2-ynylidene)- bicyclo[3.2.1]octane	17/8 (>99)
4	cis-cyclooctene	1:1	4- and 5-(phenylethynyl)cyclooctene	24/18 (>90)
5	1,4-cyclohexadiene	1:1	4-(phenylethynyl)cyclohexene ^a	73/36 (>98)
6	1,3-cycloheptadiene	1:1	4-(phenylethynyl)cycloheptene	14/11 (>81)
7	<i>cis,cis</i> -1,5-cycloocta- diene	1:1	5-(phenylethynyl)cyclooctene	61/49 (>97)
8	4-vinylcyclohexene	1:1	4-(1-(phenylethynyl)vinyl)cyclohexene	20/6 (> 92)

^a In dry DMF; in wet DMF, the hydrogenated products (Z)-4-(2-phenylethenyl)cyclohexene or 4-(2-phenylethyl)cyclohexene were obtained

experiments. The molecular structure of the bicyclic enyne (Table 3, entry 1) was also authenticated by X-ray diffraction analysis (Fig. 1).

It was shown for the first time that 1-chloro-2-phenylacetylene is a useful starting material for *Heck* reactions with cycloolefins and cyclodienes yielding not only the regular *Heck* products but also bicylic unsaturated hydrocarbons. In

Fig. 1. Molecular structure of 7-(1,3-diphenylprop-2-ynylidene)bicyclo[2.2.1]heptane

further investigations it was demonstrated that other 1-chloroalk-1-ynes (ClC \equiv CR, R = n-butyl, *n*-octyl, cyclohexyl) react analogously.

Experimental

Typical procedure

The olefin (15.0 mmol), 1-chloro-2-phenylacetylene (136 mg, 1.0 mmol), and the catalyst (Pd(OAc)₂, 11 mg, 0.05 mmol; (NEt₃Bz)Cl, 228 mg, 1.0 mmol; NaO₂CH, 204 mg, 3.0 mmol) were stirred in *DMF* (2 ml) under argon in the dark at 25°C for 2–4 d. After addition of water (20 ml) the precipitate was filtered and washed with ether. From the combined organic phase (dried over Na₂SO₄), the solvents were removed *in vacuo*. The residue was analyzed by gas chromatography using biphenyl as internal standard.

For preparative purposes the reactions were performed as described above but on a fivefold scale. The residue obtained after removal of solvents was purified by means of preparative centrifugally accelerated thin-layer chromatography (Chromatotron, Harrison Research) on silica gel using n-hexane as eluent (1–3 runs).

7-(1,3-diphenylprop-2-ynylidene)bicyclo[2.2.1]heptane (as a representative)

Colorless crystals; m.p.: $80-81^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.41-1.59$ (m, 4H, H2_{endo}, H3_{endo}, H5_{endo}, H6_{endo}), 1.68–1.82 (m, 2H, H3_{exo}, H5_{exo}), 1.82–1.94 (m, 2H, H2_{exo}, H6_{exo}), 2.83 (t, 1H, ³J_{H,H} = 4.2 Hz, H4), 3.03 (t, 1H, ³J_{H,H} = 4.4 Hz, H1), 7.24–7.34 (m, 4H, H_p of 1-Ph, 3-Ph, 2×H_o of 3-Ph), 7.34–7.40 (m, 2H, 2×H_o of 1-Ph), 7.44–7.52 (m, 4H, 2×H_m of 1-Ph and 3-Ph) ppm; ¹³C NMR (100 MHz, CDCl₃): bicyclo[2.2.1]heptane: $\delta = 28.30$ (C2 + C6), 29.02 (C3 + C5), 37.00 (C4, ¹J_{C,H} = 146.6 Hz), 40.05 (Cl, ¹J_{C,H} = 145.6 Hz), 161.29 (C7) ppm; 1,3-diphenylprop-2-ynylidene: $\delta = 88.55$ (C3, ³J_{C,Hm} = 5.0 Hz), 89.54 (C2), 108.55 (C1), 124.03 (C_i of 3-Ph, ³J_{C_i,Hm} = 8.0 Hz), 126.81/127.63 (C_p of 1-Ph and 3-Ph), 128.02 (2×C_o of 1-Ph), 128.17 (2×C_o of 3-Ph), 128.47/131.40 (C_m of 1-Ph and 3-Ph), 139.07 (C_i of 1-Ph, ³J_{C_i,Hm} = 8.0 Hz) ppm; the numbering follows Fig. 1; MS (70 eV): m/z (%) = 285 (22) [M+1], 284 (100) [M⁺], 283 (22) [M-1]; IR (KBr): ν (C≡C) = 2202 cm⁻¹; X-ray structure analysis (STOE IPDS): space group: P2₁/a; unit cell parameters: a = 17.427(3) Å, b = 10.015(3) Å, c = 19.293(4) Å, $\beta = 100.44(2)^{\circ}$, Z = 8; θ -range: $\theta = 2.30-23.99^{\circ}$; refl. (coll.): 22591; data/parameters: 5179/397; final *R* indices: $R_1 = 0.0672$ ($I > 2\sigma(I)$], $wR_2 = 0.1829$ (all data).

Acknowledgements

Financial support from the *Deutsche Forschungsgemeinschaft* is acknowledged. We are grateful to Dr. R. Krüger (Bundesanstalt für Materialprüfung, Berlin) for MALDI-MS measurements.

References

- [1] Larock RC, Johnson PL (1989) J Chem Soc Chem Commun 1368
- [2] Heck RF (1991) In: Trost BM, Fleming J (eds) Comprehensive Organic Synthesis, vol 4.
 Pergamon, Oxford, p 833; Cabri W, Candini I (1995) Acc Chem Res 28: 2; De Meijere A, Meyer FE (1994) Angew Chem 106: 2473
- [3] Dieck HA, Heck PF (unpublished results) cited in: Heck RF (1982) Org React 27: 345
- [4] Jefferey T (1987) Synthesis 70
- [5] For the use of haloalkynes in cross-coupling reactions see: Sonogashira K (1998) In: Diederich F, Stang PJ (eds) Metal-Catalyzed Cross-Coupling Reactions. Wiley-VCH, Weinheim, p 203
- [6] CIC≡CPh: Makosza M, Fedorynski M (1975) Rocz Chem 49: 1779; BrC≡CPh: Hänninen E, Takalo H, Kankare J (1988) Acta Chem Scan 42B: 614; IC≡CPh: Lee GCM, Tobias B, Holmes JM, Harcout DA, Garst ME (1990) J Am Chem Soc 112: 9330
- [7] Matos K, Soderquist JA (1998) J Org Chem 63: 461
- [8] Canty AJ (1992) Acc Chem Res 25: 83
- [9] Steinborn D, Lorenz P, Lechler J-U, Poetsch E (1995) DE 195 06 442 A1 v. 24. 2. 1995

Received September 7, 1998. Accepted September 14, 1998