Monatshefte für Chemie **Chemical Monthly** © Springer-Verlag 1998 Printed in Austria

Short Communication

The First Heck Reactions with 1-Chloroalk-1-ynes: Syntheses of Enynes with Isolated and Conjugated π -Systems

Michael Weigelt $^{\rm l}$, Diana Becher $^{\rm l}$, Dieter Ströhl $^{\rm l}$, Clemens Bruhn $^{\rm l}$, Eike Poetsch², and Dirk Steinborn^{1,*}

¹ Institut für Anorganische Chemie der Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany

² Merck KGaA, D-64271 Darmstadt, Germany

Summary. The Heck reaction between 1-chloro-2-phenylacetylene and cycloalkenes or cycloalkadienes affords phenylethynyl substituted cycloalkenes as regular Heck products as well as 1,3 diphenylprop-2-ynylidene and (cycloalkenyl)phenylmethylidene substituted bicyclic compounds as tandem products by reaction of $CIC = CPh$ and the cycloalkene in a ratio of 1:2 and 2:1, respectively.

Keywords. Heck reaction; 1-Chloroalk-1-ynes; Cycloalkenes; Cycloalkadienes; Enynes.

Die ersten Heck-Reaktionen mit 1-Chloralk-1-inen: Synthesen von Eninen mit isolierten und konjugierten π -Systemen (Kurze Mitt.)

Zusammenfassung. Die Heck-Reaktion zwischen 1-Chlor-2-phenylacetylen und Cycloalkenen oder Cycloalkadienen ergibt phenylethinylsubstituierte Cycloalkene als normale Heck-Produkte sowie 1,3-diphenylprop-2-inyliden- und (cycloalkenyl)phenylmethyliden-substituierte Bicyclen als Tandemprodukte der Reaktion von ClC=CPh und Cycloalkenen im Molverhältnis von 1:2 bzw. 2:1.

Introduction

The palladium catalyzed vinylation of organic halides RX (Heck reaction) both with conventional catalyst systems (e.g. $Pd(OAc)₂/P(o-tol)₃/NEt₃$) and under hydroorganylation conditions with *Larock* catalyst systems [1] $(e.g. \text{Pd}(\text{OAc})/$ $(NEt₃Bz)Cl/NaO₂CH)$ is one of the most important C-C bond formation reactions in synthetic organic chemistry. As RX, mainly aryl, heterocyclic, vinyl, and benzyl iodides are used [2].

It has been reported that $BrC \equiv CPh$ does not afford *Heck* products but 1,4diphenylbutadiine as homodimer [3]. IC \equiv CR reacts with vinylogous carbonyl

Corresponding author

compounds to give enynoates and enynones $RC\equiv C-CH=CH-C(O)R'$ ($R' = OMe$, Me) [4]. Apart from this, 1-halolalk-1-ynes have not been used successfully in Heck reactions [5]. Here we report the reaction of 1-chloroalk-1-ynes with cycloalkenes and cycloalkadienes employing Larock catalyst systems.

Results and Discussion

Reactions of $XC\equiv CPh$ (X = I, Br, Cl) [6] with cyclohexene in the presence of a typical *Larock* catalyst system $(\text{Pd}(\text{OAc})_2/(\text{NEt}_3\text{Bz})\text{Cl}/\text{NaO}_2\text{CH} = 1:20:60$ in DMF; 5 mol% Pd referred to $XC \equiv CPh$) show that the yield of *Heck* products is highest using the chloroalkyne, whereas the iodoalkyne does not react to *Heck* products at all (Table 1). In all three cases, the haloalkynes react to give oligomers as the main products. In the case of $BrC \equiv CPh$, oligomers up to a polymerization degree of 16 were identified by means of MALDI-MS measurements. As blank experiments prove (Table 1), these oligomerization reactions are not even in part palladium catalyzed. The formation of 1,4-diphenylbutadiyne is only a minor side reaction and was not observed when using the chloroalkyne.

In general, the reactions of cycloalkenes with 1-chloro-2-phenylacetylene in the presence of the above mentioned catalyst system proceed to give the regular Heck products (reaction of 1 mol of cycloalkene with 1 mol of $CIC \equiv CPh$; 1:1 product). Furthermore, tandem reactions occur yielding 1,3-diphenylprop-2 ynylidene and (cycloalkenyl)phenylmethylidene substituted bicyclic compounds by reaction of 1 mol cycloalkene with 2 mol $CIC = CPh$ (1:2 product) and 2 mol cycloalkene with 1 mol $CIC = CPh$ (2:1 product), respectively (Scheme 1, Table 2).

X	<i>Heck</i> reaction (with Pd cat.)			Decomp. reaction (without Pd cat.)			
	$U(\%)^{\rm a}$	$n(Heck \text{ prod.})^b$ $n(Ph_2C_4)^b$ $U(\%)^c$			$n(\text{Ph}_2\text{C}_4)^b$		
	100			89			
Br	100	12		51			
	86	24					

Table 1. Heck reaction of XC=CPh with cyclohexene and stability of XC=CPh in DMF

^a Degree of conversion of $XC=CPh$ in the Heck reaction (catalyst system: see text) with cyclohexene (c(cyclohexene): $c(XC \equiv CPh) = 15:1$, 48 h, $T = 25^{\circ}C$; ^bmol%; ^c degree of conversion of $XC \equiv CPh$ yielding oligomers in *DMF* ($t = 48$ h, $T = 25^{\circ}$ C)

Scheme 1

	Olefin	c_{ol} : $c_{\text{ClC} \equiv \text{CPh}}$	t(d)	$U_{\rm gc} (\%)^{\rm a}$	Product distribution $(\%)^b$			
					1:1	1:2	2:1	0:2
1	cyclohexene	15:1	2	24	10 ^c	75	7	
2	cycloheptene	15:1	4	69	24	8	60	
3	cycloheptene	1:1	$\overline{4}$	33	14	66	14	
$\overline{4}$	cis-cyclooctene	50:1	4	53	56		38	
5	1,4-cyclohexadiene	50:1	4	84	90			6
6	1,3-cycloheptadiene	30:1	4	44	86	$\overline{4}$		
7	cis, cis -1,5-cyclooctadiene	50:1	4	72	93	3		3
8	4-vinylcyclohexene ^d	15:1	\overline{c}	34	85			
9	p -methylstyrene	15:1		24	27		67	2

Table 2. Product distribution in the Heck reaction of cycloalkenes and cycloalkadienes with $CIC \equiv CPh$ (catalyst system: see text; $T = 25^{\circ}C$)

^a Degree of conversion of ClC=CPh to low-molecular products; ^b differences to 100% arise from unidentified products; ^c the main isomer is 4-(phenylethynyl)cyclohexene; analogously, 4-substituted cyclohexenes were found to be the main products in the Heck arylation of cyclohexene [9]; d catalyst system: Pd(OAc)₂/P(o -tol)₃/NaOAc = 1:2:60, solvent: *DMF*, $T = 100^{\circ}$ C

Due to hydroorganylation conditions, hydrogenation of triple and/or double bonds was also observed.

In the reaction with cyclohexene, the 1:2 product is the major one (Table 2, entry 1), whereas in the reaction with cycloheptene the ratio of products can be influenced by the ratio of cycloheptene to $CIC = CPh$ (entries 2 and 3). With *cis*cyclooctene, normal Heck reaction predominates (entry 4). Cycloalkadienes were found to react affording phenylethynylcycloalkenes as the principal products (entries 5–7), *i.e.*, regular *Heck* reactions under hydrogenation of one double bond take place. The homodimer 1,4-diphenylbutadiyne (0:2 product) is formed to a small extent only. The reaction of $CIC \equiv CPh$ with p-methyl-styrene (included in Table 2, entry 9, for comparison) affords the 2:1 compound as the main product.

A plausible route for the formation of the tandem products is outlined in Scheme 2. The formation of the 1:1 products *via* \bf{A} and \bf{B} as intermediates is depicted in the first line. Intermediate \bf{B} may also undergo an intramolecular insertion reaction to give C which in turn reacts either with cycloalkenes yielding the 2:1 products or with A in the sense of a transmetallation and reductive elimination affording the 1:2 products. The transmetallation may have a fourcentered transition state [7]. A Pd(IV) intermediate formed by oxidative addition of $CIC = CPh$ to C followed by a reductive elimination may also be discussed [8]. The formation of the 1:2 products via a Heck reaction of the 1:1 products with D as an intermediate and a subsequent intramolecular insertion reaction was rendered unlikely by a separate experiment (4-(phenylethynyl)cyclohexene (Table 3, entry 5) and $CIC = CPh$ do not react to the corresponding Heck products).

The major products were obtained with yields between 14 and 73% (GC) and 6±49% (isolated, not optimized), respectively (Table 3). All substances were completely characterized by one- and two-dimensional ¹H and ¹³C NMR

Table 3. Syntheses of enynes with isolated and conjugated π -systems (reaction conditions as in Table 2)

^a In dry *DMF*; in wet *DMF*, the hydrogenated products (Z) -4- (2) -phenylethenyl)cyclohexene or 4- (2) phenylethyl)cyclohexene were obtained

experiments. The molecular structure of the bicyclic enyne (Table 3, entry 1) was also authenticated by X-ray diffraction analysis (Fig. 1).

It was shown for the first time that 1-chloro-2-phenylacetylene is a useful starting material for Heck reactions with cycloolefins and cyclodienes yielding not only the regular Heck products but also bicylic unsaturated hydrocarbons. In

Fig. 1. Molecular structure of 7-(1,3-diphenylprop-2-ynylidene)bicyclo[2.2.1]heptane

further investigations it was demonstrated that other 1-chloroalk-1-ynes ($\text{ClC} \equiv \text{CR}$, $R = n$ -butyl, *n*-octyl, cyclohexyl) react analogously.

Experimental

Typical procedure

The olefin (15.0 mmol), 1-chloro-2-phenylacetylene (136 mg, 1.0 mmol), and the catalyst (Pd(OAc)₂, 11 mg, 0.05 mmol; (NEt₃Bz)Cl, 228 mg, 1.0 mmol; NaO₂CH, 204 mg, 3.0 mmol) were stirred in DMF (2 ml) under argon in the dark at 25° C for 2-4 d. After addition of water (20 ml) the precipitate was filtered and washed with ether. From the combined organic phase (dried over $Na₂SO₄$), the solvents were removed in vacuo. The residue was analyzed by gas chromatography using biphenyl as internal standard.

For preparative purposes the reactions were performed as described above but on a fivefold scale. The residue obtained after removal of solvents was purified by means of preparative centrifugally accelerated thin-layer chromatography (Chromatotron, Harrison Research) on silica gel using n -hexane as eluent (1–3 runs).

7-(1,3-diphenylprop-2-ynylidene)bicyclo[2.2.1]heptane (as a representative)

Colorless crystals; m.p.: 80–81°C; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.41-1.59$ (m, 4H, H2_{endo}, $H3_{endo}$, $H5_{endo}$, $H6_{endo}$, 1.68-1.82 (m, 2H, $H3_{exo}$, $H5_{exo}$), 1.82-1.94 (m, 2H, $H2_{exo}$, $H6_{exo}$), 2.83 (t, 1H, ${}^{3}J_{\text{H,H}} = 4.2 \text{ Hz}$, H4), 3.03 (t, 1H, ${}^{3}J_{\text{H,H}} = 4.4 \text{ Hz}$, H1), 7.24–7.34 (m, 4H, H_p of 1-Ph, 3-Ph, $2\times$ H_o of 3-Ph), 7.34–7.40 (m, 2H, 2 \times H_o of 1-Ph), 7.44–7.52 (m, 4H, 2 \times ¹³C NMR (100 MHz, CDCl₃): bicyclo[2.2.1]heptane: $\delta = 28.30$ (C2 + C6), 29.02 (C3 + C5), 37.00 $(C4, {}^{1}J_{\text{C,H}} = 146.6 \text{ Hz})$, 40.05 (Cl, ${}^{1}J_{\text{C,H}} = 145.6 \text{ Hz}$), 161.29 (C7) ppm; 1,3-diphenylprop-2ynylidene: $\delta = 88.55$ (C3, ${}^{3}J_{\text{C}_i,H_m} = 5.0 \text{ Hz}$), 89.54 (C2), 108.55 (C1), 124.03 (C_i of 3-Ph, ${}^{3}J_{\text{C}_{i},\text{H}_{m}}$ = 8.0 Hz), 126.81/127.63 (C_p of 1-Ph and 3-Ph), 128.02 (2×C_o of 1-Ph), 128.17 (2×C_o of 3-Ph), 128.47/131.40 (C_m of 1-Ph and 3-Ph), 139.07 (C_i of 1-Ph, ${}^{3}J_{\text{C}_i,\text{H}_m} = 8.0 \text{ Hz}$) ppm; the numbering follows Fig. 1; MS (70 eV): m/z (%) = 285 (22) [M+1], 284 (100) [M⁺], 283 (22) $[M-1]$; IR (KBr): ν (C \equiv C) $=$ 2202 cm⁻¹; X-ray structure analysis (STOE IPDS): space group: P2₁/a; unit cell parameters: $a = 17.427(3)$ Å, $b = 10.015(3)$ Å, $c = 19.293(4)$ Å, $\beta = 100.44(2)$ °, $Z = 8$; θ -range: $\theta = 2.30-23.99^{\circ}$; refl. (coll.): 22591; data/parameters: 5179/397; final R indices: $R_1 = 0.0672$ ($I > 2\sigma(I)$], $wR_2 = 0.1829$ (all data).

Acknowledgements

Financial support from the *Deutsche Forschungsgemeinschaft* is acknowledged. We are grateful to Dr. R. Krüger (Bundesanstalt für Materialprüfung, Berlin) for MALDI-MS measurements.

References

- [1] Larock RC, Johnson PL (1989) J Chem Soc Chem Commun 1368
- [2] Heck RF (1991) In: Trost BM, Fleming J (eds) Comprehensive Organic Synthesis, vol 4. Pergamon, Oxford, p 833; Cabri W, Candini I (1995) Acc Chem Res 28: 2; De Meijere A, Meyer FE (1994) Angew Chem 106: 2473
- [3] Dieck HA, Heck PF (unpublished results) cited in: Heck RF (1982) Org React 27: 345
- [4] Jefferey T (1987) Synthesis 70
- [5] For the use of haloalkynes in cross-coupling reactions see: Sonogashira K (1998) In: Diederich F, Stang PJ (eds) Metal-Catalyzed Cross-Coupling Reactions. Wiley-VCH, Weinheim, p 203
- [6] ClC=CPh: Makosza M, Fedorynski M (1975) Rocz Chem 49: 1779; BrC=CPh: Hänninen E, Takalo H, Kankare J (1988) Acta Chem Scan $42B$: 614; IC \equiv CPh: Lee GCM, Tobias B, Holmes JM, Harcout DA, Garst ME (1990) J Am Chem Soc 112: 9330
- [7] Matos K, Soderquist JA (1998) J Org Chem 63: 461
- [8] Canty AJ (1992) Acc Chem Res 25: 83
- [9] Steinborn D, Lorenz P, Lechler J-U, Poetsch E (1995) DE 195 06 442 A1 v. 24. 2. 1995

Received September 7, 1998. Accepted September 14, 1998